skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nolan, Liam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Subparsec binary supermassive black holes (BSBHs) should be common from galaxy mergers, yet direct evidence has been elusive. We present Hubble Space Telescope (HST)/WFC3IR F160W imaging for a sample of eight candidate subparsec BSBHs at redshiftsz ∼ 0.1–0.5, as well as cross-comparison with a sample of ordinary quasars with archival HST/WFC3 IR F160W images. These eight candidate subparsec BSBHs were identified from multiepoch spectroscopic surveys of quasars (including both typical quasars and those with single-peaked velocity-offset broad lines), whose broad Hβlines are significantly offset (by ≳ a few hundred kilometers per second) from the systemic redshifts. We directly test the prediction that the host galaxies of BSBHs would have a higher fraction of disturbed morphologies and younger stellar bulges from recent interactions than those of control quasars. After careful subtraction of the central quasar light, our candidate BSBH hosts show a statistically undifferentiated distribution of host asymmetry, indicative of a similar fraction of recent mergers. While a significantly larger sample is needed to place this result on a much firmer statistical ground, it opens questions as to the timescale differences between galaxy merger and BSBH formation, or the efficacy of the radial-velocity-shift-based selection of subparsec BSBH candidates. 
    more » « less
    Free, publicly-accessible full text available August 8, 2026
  2. Abstract Dual active galactic nuclei (AGNs), a phase in some galaxy mergers during which both central supermassive black holes (SMBHs) are active, are expected to be a key observable stage leading up to SMBH mergers. Constraining the population of dual AGNs in both the nearby and high-zUniverse has proven to be elusive until very recently. We present a multiwavelength follow-up campaign to confirm the nature of a sample of 20 candidate dual AGNs at cosmic noon (z ∼ 2) from the VODKA sample. Through a combination of Hubble Space Telescope and Very Large Array imaging, we refute the possibility of gravitational lensing in all but one target. We find evidence of dual AGNs in three systems, while seven exhibit a single AGN in galaxy pairs, through either strong radio emission or ancillary emission-line data. The remaining systems are confirmed as either quasar−star superpositions (seven) or nonlensed pairs (two) that require further investigations to establish AGN activity. Among the systems with radio detections, we find a variety of radio spectral slopes and UV/optical colors suggesting that our sample contains a range of AGN properties, from obscured radio-quiet objects to those with powerful synchrotron-emitting jets. This study presents one of the largest dedicated multiwavelength follow-up campaigns to date searching for dual AGNs at high redshift. We confirm several of the highest-zsystems at small physical separations, thus representing some of the most evolved dual-AGN systems at the epoch of peak quasar activity known to date. 
    more » « less
    Free, publicly-accessible full text available August 7, 2026
  3. Abstract Dual quasars at small physical separations are an important precursor phase of galaxy mergers, ultimately leading to the coalescence of the two supermassive black holes. Starting from a sample of dual and/or lensed quasar candidates discovered using astrometric jitter in Gaia data, we present a pilot case study of one of the most promising yet puzzling candidate dual quasars at cosmic noon (z∼ 1.8). Using multiwavelength imaging and spectroscopy from X-ray to radio, we test whether the SDSS J0823+2418 system is two individual quasars in a bound pair at separation ∼0.″64, or instead a single quasar being gravitationally lensed by a foreground galaxy. We find consistent flux ratios (∼1.25−1.45) between the two sources in optical, near-IR (NIR), UV, and radio, and thus similar spectral energy distributions, suggesting a strong-lensing scenario. However, differences in the radio spectral index, as well as changing X-ray fluxes, hint at either a dual quasar with otherwise nearly identical properties or perhaps lensing-based time lag of ∼3 days paired with intrinsic variability. We find with lens mass modeling that the relative NIR positions and magnitudes of the two quasars and a marginally detected central galaxy are consistent with strong lensing. Archival Sloan Digital Sky Survey spectra likewise suggest a foreground absorber via Mgiiabsorption lines. We conclude that SDSS J0823+2418 is likely a lensed quasar, and therefore that the VODKA sample contains a population of these lensed systems (perhaps as high as 50%) as well as dual quasars. 
    more » « less
  4. We investigate the influence of bifurcation geometry, asymmetry of daughter airways, surfactant distribution, and physicochemical properties on the uniformity of airway recruitment of asymmetric bifurcating airways. To do so, we developed microfluidic idealized in vitro models of bifurcating airways, through which we can independently evaluate the impact of carina location and daughter airway width and length. We explore the uniformity of recruitment and its relationship to the dynamic surface tension of the lining fluid and relate this behavior to the hydraulic (P Hyd ) and capillary (P Cap ) pressure drops. These studies demonstrate the extraordinary importance of P Cap in stabilizing reopening, even in highly asymmetric systems. The dynamic surface tension of pulmonary surfactant is integral to this stability because it modulates P Cap in a velocity-dependent manner. Furthermore, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, aiding in gas exchange, and reducing ventilator-induced lung injury. NEW & NOTEWORTHY The dynamic surface tension of pulmonary surfactant is integral to the uniformity of asymmetric bifurcation airway recruitments because it modulates capillary pressure drop in a velocity-dependent manner. Also, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, reducing ventilator-induced lung injury. 
    more » « less